期刊文献+

利用H-J-B方程的粘性逼近求解非线性最优控制

Approximation to Nonlinear Optimal Control by Viscosity Approximation of H-J-B Equations
下载PDF
导出
摘要 利用李级数离散控制系统,逼近最优轨道,并利用H-J-B方程的粘性逼近估计值函数.进而借助动态规划原理,把非线性最优控制的数值求解转化为一组正定二次规划的求解.对一个非线性的动态规划过程进行线性化的逼近,这在理论上简化了非线性最优控制问题求解的困难,从实际计算数学的角度看,这也将加快非线性最优控制数值解的计算速度. In this article,we introduce the idea of using Lie series to give an approximation of the optimal tra- jectory of a nonlinear optimal control problem by a discrete process.The dynamic programming equation is solved by means of the viscosity approximation of value functions and a positive quadratic programming.By this way,a nonlinear dynamic programming is transformed to a linear approximation.The difficulty of solving an op- timal control problem is simplified.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第7期947-951,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金资助项目(10371089)
关键词 非线性最优控制 李级数 粘性逼近 <Keyword>nonlinear optimal control Lie series viscosity approximation
  • 相关文献

参考文献3

  • 1Huang C S,Wang S,Teo K L.Solving Halmilton-Jacobi-Bellman equations by a modified method of characteristics[J].Nonlinear Anal,Ser A: Theory Methods,2000,40(1-8): 279-293.
  • 2ZHU Jing-hao,ZOU Zhi-qiang.An approximation to discrete optimal feedback controls[J].International Journal of Mathematics and Mathematical Sciences,2003,47:2989-3001.
  • 3Lamnabhi-Lagarrigue F,Sthefani G.Singular optimal control problems:On the necessary condition of optimality[J].SIAM J Control Optim,1990,28(4):623-840.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部