期刊文献+

基于公共知识的电子市场定价算法 被引量:2

Common knowledge-based pricing algorithm in electronic marketplaces
下载PDF
导出
摘要 研究了电子市场定价博弈中公共知识的作用,通过简单地改变市场需求函数和市场分配函数,使卖方Agent获得了多Agent作用下的不断改变着的环境知识,而不再是关于市场需求的个体知识。仿真实验表明,通过获得关于市场需求的公共知识,卖方Agent可以协调彼此的价格行为,在合作还是竞争问题上表现出更长远的群体智能行为,从而提高了市场配置资源的有效性。 The role of common knowledge of pricing game in electronic marketplaces was studied. By simply changing the demand function and allocation function, seller Agents can acquire the common knowledge about the constantly changing market, rather than inferred individual knowledge. Simulation results indicated that seller Agents tends to be more coordinated in their pricing behaviour and became more intelligent in concerning the problem of whether to cooperate or compete in a long term. Results also shows that common knowledge can improve market effectiveness.
出处 《计算机应用》 CSCD 北大核心 2005年第8期1833-1835,共3页 journal of Computer Applications
基金 国家863计划资助项目(2002AA134020-04)
关键词 智能AGENT 电子市场 动态定价 博弈论 <Keyword>intelligent Agent electronic marketplaces dynamic pricing game theory
  • 相关文献

参考文献6

  • 1LELOUP B. Pricing with local interactions on Agent-based electronic marketplaces[ J]. Electronic Commerce Research and Applications,2003, 2(2): 187 - 198.
  • 2WU DJ, SUN YJ. Cooperation in multi-agent bidding[J]. Decision Support Systems, 2002, 33 (3): 335 - 347.
  • 3WOOLDRIDGEM.多 Agent 系统引论[ M].北京: 电子工业出版社,2003.21-25.
  • 4CABRALES A, SOBEL J. On the evolution of optimizing behavior[ J]. Journal of Economic Theory, 1992, 57 (3): 392 - 406.
  • 5KEPHART JO, HANSON JE, GREENWALD AR. Dynamic Pricing by software Agents[ J]. Computer Network, 2000, 32(6): 731 -752.
  • 6FUDENBERGD.博弈学习理论[M].北京:中国人民大学出版社,2002.65-68.

共引文献2

同被引文献14

  • 1郝宗波,洪炳镕,周彤.基于模糊Q-学习的多智能体协作策略研究[J].哈尔滨工业大学学报,2004,36(7):931-933. 被引量:1
  • 2杜春侠,高云,张文.多智能体系统中具有先验知识的Q学习算法[J].清华大学学报(自然科学版),2005,45(7):981-984. 被引量:21
  • 3韩伟,王云,陈优广.基于多智能体协商的电子市场原料配置模型[J].计算机应用,2006,26(12):3008-3011. 被引量:5
  • 4韩伟,陈优广,姜昌华.基于内省推理的多agent在线学习方法[J].模式识别与人工智能,2007,20(2):254-260. 被引量:5
  • 5Hu J, Wellman M P. Muhiagent reinforcement learning: Theoretical framework and algorithm [ C ]//Proceeding of 15th International Conference on Machine Learning. Madison, San Francisco, CA : Morgan Kaufmann Publishers Press, 1998:242 - 250.
  • 6Littman M L. Markov games as a framework for multi-agent reinforcement learning [ C ]//New Brunswick. Proc. 11th international comference on Machine Learning. NJ, Morgan Kaufmann,San. Mateo,1994: 157 - 163.
  • 7Carmel D, Markovitch S. Opponent Modeling in Multi-agent Systems [M/OL]. http://www. cs. technion. ac. il/-shaulm/papers/pdf/ Carmel-Markovitch-Inai1996. pdf.
  • 8Han Wei, Liu Lingbo, Zheng Huaili. Dynamic Pricing by Multiagent Rreinforcement Learning[ C ]//Proceedings of the International Symposium on Electronic Commerce and Security ,2008, Guangzhou, China.
  • 9FUDENBERGD.博弈学习理论[M].北京:中国人民大学出版社,2002.65-68.
  • 10Leloup B.Pricing with local interactions on agent-based electronic marketplaces[J].Electronic Commerce Research and Applications,2003,2(2):187-198.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部