摘要
针对简单遗传算法在曲线拟合应用中局部搜索能力差、收敛精度低的特点,提出了一种新的基于种群再分布的改进遗传算法。该算法在遗传算法进行的过程中,根据最优解的优劣,调整种群在最优解附近的分布,从而增强了算法的局部搜索能力。实验证明,该方法对于曲线拟合问题能取得优于简单遗传算法和传统数值迭代方法的结果。
In order to improve the poor local search capability and low convergence precision of GA when applied in curvefitting, a new improved GA, named Population Redistributing Genetic Algorithm (PRGA), was proposed. With the progress of GA, this new algorithm adjusted the distribution of the population according to the quality of the best solution, thus effectively improved GAs local search capability. According to the results of the experiments on simulated data, PRGA gives better results in curve fitting compared with simple GA and traditional numerical iterative method.
出处
《计算机应用》
CSCD
北大核心
2005年第8期1881-1883,共3页
journal of Computer Applications
基金
上海市科委科研基金资助项目(012912059)
上海市教委科研基金资助项目(01JG050350)
关键词
遗传算法
曲线拟合
种群分布
种群再分布遗传算法
<Keyword>genetic algorithm
curve fit
population distribution
PRGA(Population Redistributing GA)