期刊文献+

一种考虑摩擦与排斥的人员疏散元胞自动机模型 被引量:69

原文传递
导出
摘要 在人员疏散过程中,人与人之间、人与环境(如建筑物)之间存在相互作用力,包括吸引力、排斥力和摩擦力.3种力对人员疏散的行为、速度和效率起着关键作用.在以往的模型中,吸引力可以得到较好地描述,但对排斥力和摩擦力的定量描述还不完善.近年来提出的多粒子自驱动模型(社会力模型)可以较好地体现3种力的作用,但由于它是一种连续型模型,运算的速度较慢并很难得到改善.目前研究较多的离散型模型,如元胞自动机模型和格子气模型等,可以达到较高的运算速度,但很难考虑到摩擦力与排斥力的作用,造成运算结果误差较大.针对这种情况,本文在经典元胞自动机模型的基础上,量化确定了摩擦力和排斥力的运算规则,提出了一种新的元胞自动机模型.通过将模型的运算结果与多粒子自驱动模型进行比较表明,新模型在人员行为、疏散速度以及“快即是慢”效应等方面都可以得到与后者相同的结果,而运算速度则与普通的元胞自动机及格子气模型相当,比社会力模型大为提高.
出处 《中国科学(E辑)》 CSCD 北大核心 2005年第7期725-736,共12页 Science in China(Series E)
基金 国家自然科学基金重点项目(批准号:50323005) 重大国际合作项目(批准号:50320120156)资助
  • 相关文献

参考文献25

  • 1Biham O, Middleton A A, Levine D. Self-organization and a dynamical transition in traffic-flow models. Phys Rev A, 1992, 46: 6124~6127
  • 2Wang B H, Woo Y F, Hui P M. Improved mean-field theory of two-dimensional traffic flow models. J Phys A-Math Gen, 1996, 29: 31~35
  • 3Chung K H, Hui P M, Gu G Q. 2-Dimensional traffic flow problems with faulty traffic lights. Phys Rev E, 1995, 51: 772~774
  • 4Cuesta J A, Martinez F C, Molera J M, et al. Phase-transitions in 2-dimensional traffic-flow models. Phys Rev E, 1993, 48: 4175~4178
  • 5Fruin J J. Designing for pedestrians: a level-of-service. In: Highway Research Board. Highway Research Record, Number 355, Washington D D: Pedestrians, 1971. 1~15
  • 6Graham T L, Roberts D J. Qualitative overview of some important factors affecting the egress of people in hotel fires. Hospitality Management, 2000, 19: 79~87
  • 7Livesey G E, Taylor I R, Donegan H A. A consideration of evacuation attributes and their Functional sensitivities. 2nd International Symposium on Human Behavior in Fire, 2001. 111~121
  • 8Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic. Nature, 2000, 407: 487~490
  • 9Helbing D, Keltsch J, Molnar P. Modelling the evolution of human trail systems. Nature, 1997, 388: 47~50
  • 10Helbing D, Molnar P. Social force model for pedestrian dynamics. Phys Rev E, 1995, 51: 4282~4286

二级参考文献9

  • 1[1]Byran, J L. Human Behaviour in Fire: The Development and Maturity of a Scholarly Study Area[J]. Fire Mater. ,1999, 23(6) :249 ~253.
  • 2[2]Sime, J. D. An occupant vesponse shelter escape time (ORSET) model [J]. Safety Science, 2001, 38: 109~125.
  • 3[3]Galea, E.R. and Galparsoro, L. M. P. A ComputerBased Simulation - Model for the Prediction of Evacuation from Mass - Transport Vehicles [ J ]. Fire Safety J. ,1994, 22:341 ~ 366.
  • 4[4]Thompson P. A. , Marchant E. W. A Computer Model for the Evacuation of Large Building Populations [ J ]. Fire Safe. J., 1995a, 24:131 ~148.
  • 5[5]Kostreva, M. M. , Lancaster L.C. A Comparison of Two Methodologies in HAZARD I Fire Egress Analysis [J].Fire Technology, 1998, 34(3): 227 ~246.
  • 6[6]Fahy, R.F. A Practical Example of an Evacuation Model for Complex Spaces[ C]. Human Behaviour in Fire - First International Symposium, 1999:743 ~ 751.
  • 7[7]D. Helbing D. , I. Farkas I. , T. Vicsek T. , Simulating dynamical features of escape panic [ J ]. Nature, 2000,407 (2000): 487 ~ 490.
  • 8[8]Muramatsu M. , Irie T. , Nagatani T. Jamming Transition in Pedestrian Counter Flow[ J]. Physica A, 1999, 267:487~498.
  • 9[9]Chen T. , Song W, et al. Pedestrian evacuation flow from hallway to stairs [ C ]. to be published in Proceedings of the CIB - CTBUH International Conference on Tall Buildings, 8 ~ 10 May 2003, Malaysia.

共引文献85

同被引文献675

引证文献69

二级引证文献471

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部