期刊文献+

关联规则算法的演化和进展 被引量:2

Evolution on Association Rules Algorithm
下载PDF
导出
摘要 关联规则挖掘是数据挖掘的一个重要应用。从1993年Agrawal等首先提出了用基于频集理论的递推方法来解决挖掘顾客交易数据库中项集间的关联规则问题以来,关联规则的算法已经进行了很多改进。这些改进集中在三个方面:减少候选集和压缩事务总数;减少数据库扫描次数;引入并行技术。近年来,研究人员引入更能代表人类决策思维模式的模糊集理论,并将研究目标对准更复杂的时序和空间数据,挖掘的范围也从单维事务扩展为多维事务,但相应的要面临更加复杂的计算。 Association rules is an important application of Data Mining. The association rules algorithm has improved a lot after 1993 when Agrawal el al proposed to solve the mining association rules of itemsets in the trade database of customers by using deduction method based on frequent itemsets theory. These improvements focus on three aspects reducing candidate itemsets and transaction amount reducing scan times of database inducing parallel computation. Recently researchers induced the fuzzy sets theory which can presents human decision model better and they focused their study on the more complicated sequence and spatial data and the mining confine was extented from single dimension to multiple dimension. But correspond to that we now face more complicated computation.
出处 《中国医学物理学杂志》 CSCD 2005年第4期612-613,579,共3页 Chinese Journal of Medical Physics
关键词 关联规则 APRIORI算法 FP-TREE算法 并行计算 模糊集 associate rule APRIORI algorithm FP-Tree algorithm parallel computation fuzzy sets theory
  • 相关文献

参考文献12

  • 1R Agrawl, Srikant.Fast algoritbm for mining association rules[C].In:Proc of Int'l Conf Very Large Database, Chile:Morgan Kaufmann, 1994,9:487-499.
  • 2Jiawei Han, Micheline Kamber. Data Mining:Concept and Techniques[M]. Morgan Kaufmann publishers, inc, 2000.
  • 3R. Agrawal, and R. Srikant. Fast algorithms for mining association rules in large database[R]. Technical Report FJ9839, IBM A maden Research Center, San Jose, CA, 1994,7.
  • 4S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket data[C]. In ACM SIGMOD International Conference On the Management of Data,1997,5:255-264.
  • 5J. Han,J. Pei, and Y.Yin. Mining Frequent patterns without candi date generation [C]. In Proc. 2000 ACM-SIGMOD Int. Conf.Management of Data (SIGMOD'00) , 2000,5:1-12.
  • 6J. S. Park, M. S. Chen, and P. S. Yu. Efficient parallel data mining of association rules [C]. 4th International Conference on Information and Knowledge Management, Baltimore, Maryland, 1995,11:233-235.
  • 7Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases[C]. Proceedings of the 21st International Conference on Very Large Database, 1995,9:432-443.
  • 8O R Zaiane, M El-Hajj, P Lu. Fast Parallel Association Rule Mining Without Candidate Generation[R]. Technical Report TR01-12,Department of Computing Science,University of Alberta, Canada,2001.
  • 9Hu, Yi-Chung; Chen, Ruey-Shun; Tzeng, Gwo-Hshiung. Discovering fuzzy association rules using fuzzy partition methods Knowledge-Based Systems, 2003,4:16(3),137.
  • 10Au, Wai-Ho; Chan, Keith C.C. Mining changes in association rules: a fuzzy approach. Fuzzy Sels & Systems, 2005,1,149(1):87.

同被引文献23

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部