摘要
Relationship between the onset date of South China Sea (SCS) summer monsoon and the summer rainfall in Shandong Province was examined by comprehensive analysis to establish a conceptual model of the link. If the summer monsoon occurs earlier, the 500 hPa level would induce the teleconnection of Eurasian pat- tern in the summer (June-August), which indicates that the western Pacific subtropical high is displaced north- ward further than usual, the Siberian high is intensified and the Okhotsk low is deepened. Under such circum- stance, Shandong, located in the west side of the subtropical high and in front of the mid-Siberia high, would be expected to have a wet summer because it is quite possible for cold and warm air to meet and interact with each other in Shandong. Statistical analysis revealed that the 500 hPa anomalies over Korea and Japan were sensitive to the SCS monsoon onset date and very important to precipitation in Shandong, and that the convective activi- ties over the deep water basin in the SCS in 24–26 pentads significantly influenced the position of the ridge line of the western Pacific subtropical high. These findings yielded better understanding of the causative mechanisms involved in the precipitation generation, so that the knowledge gained can possibly be applied for long-lead forecast.
Relationship between the onset date of South China Sea (SCS) summer monsoon and the summer rainfall in Shandong Province was examined by comprehensive analysis to establish a conceptual model of the link. If the summer monsoon occurs earlier, the 500 hPa level would induce the teleconnection of Eurasian pat- tern in the summer (June-August), which indicates that the western Pacific subtropical high is displaced north- ward further than usual, the Siberian high is intensified and the Okhotsk low is deepened. Under such circum- stance, Shandong, located in the west side of the subtropical high and in front of the mid-Siberia high, would be expected to have a wet summer because it is quite possible for cold and warm air to meet and interact with each other in Shandong. Statistical analysis revealed that the 500 hPa anomalies over Korea and Japan were sensitive to the SCS monsoon onset date and very important to precipitation in Shandong, and that the convective activi- ties over the deep water basin in the SCS in 24–26 pentads significantly influenced the position of the ridge line of the western Pacific subtropical high. These findings yielded better understanding of the causative mechanisms involved in the precipitation generation, so that the knowledge gained can possibly be applied for long-lead forecast.
基金
This paper is sponsored by natural science fund of Shandong Province (No.Y2003E01)