期刊文献+

多层前向神经网络的自适应禁忌搜索训练 被引量:4

Applying An Adaptive Strategy-Based Tabu Search to Neural Network
下载PDF
导出
摘要 针对BP算法属于局部优化算法的不足,提出了一种新的全局优化算法——自适应禁忌搜索作为前向神经网络的训练算法。该算法通过邻域和候选集的相互配合,动态地调整候选集中分别用于集中性搜索与多样性搜索的元素个数,提高了算法运行的质量和效率。以经典的异或问题(XOR)为例,进行了对比研究。实验结果表明,该算法与BP算法相比明显提高了网络的收敛概率和收敛精度。 Aiming at BP algorithm's drawbacks that it is essentially a local optimization algorithm,a novel and global optimication algorithm,Adaptive Tabu Search,is proposed to train feed-forward neural networks. This algorithm im- proves the quality and efficiency of training neural network by adjusting dynamically the numbers of intensification el- ements and diversification elements in candidate list and by the cooperating of neighborhood and candidate list. Taking the classical XOR problem as an example,a compare investigation is implemented. It shows that this algorithm has obviously superior convergence rate and precision compared to the BP algorithm.
出处 《计算机科学》 CSCD 北大核心 2005年第6期118-120,共3页 Computer Science
基金 本文受到教育部科学技术重点项目(No.104262) 重庆市科委基金(2003-7881)
关键词 多层前向神经网络 禁忌搜索 自适应 局部优化算法 全局优化算法 BP算法 训练算法 元素个数 异或问题 对比研究 收敛精度 候选集 多样性 集中性 Tabu search Feed-forward neural network Optimizing globally Intensification and diversification
  • 相关文献

参考文献21

  • 1刘光远,邱玉辉,虞厥邦.基于稳健误差估计器的快速BP算法[J].计算机科学,1997,24(2):66-68. 被引量:5
  • 2裴浩东,苏宏业,褚健.多层前向神经网络的权值平衡算法[J].电子学报,2002,30(1):139-141. 被引量:18
  • 3梁久祯,何新贵,黄德双.前馈网络的一种超线性收敛BP学习算法[J].软件学报,2000,11(8):1094-1096. 被引量:20
  • 4高雪鹏,丛爽.BP网络改进算法的性能对比研究[J].控制与决策,2001,16(2):167-171. 被引量:97
  • 5Engoziner S, Tomsen E. An accelerated learning algorithm for multiplayer prception:Optimization layer by layer. IEEE Transactions on Neural Network,1995,6(1):31~42
  • 6Scalero R S,Tepedelenlioglu N. A fast new algorithm for training feedforward neural networks. IEEE Transactions on Signal Processing, 1992,40(1) :202~210
  • 7Friedrich S,Klaus P A. Clinical monitoring with fuzzy automata.Fuzzy Sets and Systems, 1994,61 (1): 37~42
  • 8Delgado M,Mantas C,Pegalajar M C. A genetic procedure to tune perceptrons. In:Proc. of Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU'96), 1996,2:963~969
  • 9Blanco A,Delgado M,Pegalajar M C. A genetic algorithm to obtain the optimal recurrent neural network. International Journal of Approximate Reasoning, 2000,23 (1): 67 ~ 83
  • 10Blanco A,Delgado M, Pegalajar M C. A real-coded genetic algorithm for training recurrent neural networks. Neural Networks,2001,14(1) :93~105

二级参考文献24

  • 1刘光远,邱玉辉,虞厥邦.基于稳健误差估计器的快速BP算法[J].计算机科学,1997,24(2):66-68. 被引量:5
  • 2焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1992..
  • 3刑文训.现代优化计算方法[M].北京:清华大学出版社,1999..
  • 4[1]F Glover, M Laguna. Tabu Search. Boston: Kluwer Academic Publishers, 1997
  • 5[2]Jacques A Ferland, I Soumia, L Alain .et al.. Scheduling using tabu search with intensification and diversification. Computer & Operations Research, 2001, 28(11): 1075~1092
  • 6[3]R Chelouah, P Siarry. Tabu search applied to global optimization. European Journal of Operation Research, 2000, 123(2): 256~270
  • 7[4]G Michel, L Gilbert, S Frédéric. A tabu search heuristic for the undirected selective traveling salesman problem. European Journal of Operation Research, 1998, 106(2-3): 539~545
  • 8[5]L Guangyun, H Yi, Q Yuhi .et al.. Research on influence of solving quality based on different initializing solution algorithm in tabu search. In: Proc of Int'l Conf on Communication, Circuits and Systems and West Sino Exposition. Chengdu: IEEE Press, 2002. 1141~1145
  • 9[10]Gerhard R. TSPLIB. 2001. http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
  • 10[11]I Kubn Altinel, Necati Aras, B John Oommen. Fast efficient and accurate solutions to the Hamiltonian path problem using neural approaches. Computers & Operations Research, 2000, 27(5): 461~494

共引文献167

同被引文献47

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部