期刊文献+

基于Overcomplete ICA的人脸特征提取

Face Feature Extraction Based on Overcomplete ICA Feature Extraction
下载PDF
导出
摘要 人脸特征提取是人脸识别中最重要的一个环节,人脸特征提取的一种主要方法是寻找一系列的基图像,然后再把人脸表示为这一系列基图像的线性叠加。PCA和ICA在寻找基图像的过程中,源图像和基图像的数目都是相同的。本文提出了一种基于Overcomplete ICA的人脸特征提取方法,所得到的基图像数目要多于源图像数目。最后采用最小距离分离器进行人脸识别的实验,并与PCA和ICA的识别效果进行比较。 Face feature extraction is the key procedure in face recognition. An important approach of face extraction is to face a set of base images, then represent faces as a linear combination of those base images. During the procedure of finding base images using PCA and ICA, the number of source images is equal to base images. In the paper, we present a face feature extraction approach, which gain the the number base images is lager than source images. At the end of thts paper, we give a face recognition examination using Overcomplete ICA feture extraction and shortest dis- tant separation, and compare the result with PCA and ICA.
机构地区 中山大学数学系
出处 《计算机科学》 CSCD 北大核心 2005年第7期162-165,共4页 Computer Science
基金 国家自然科学基金(10371135)
  • 相关文献

参考文献10

  • 1Lewicki M S, Sejnowski T J. Learning Overcomplete Representations. Neural Computation, 1998
  • 2Lee T-W, Lewicki M S, Giorlami M. Blind Source Separation of More Sourses Than Mixture Using Overcomplete Representations. IEEE Signal Processing Letters, 1999,6 (4): 87~ 90
  • 3Theis F J. A Geometric Algorithm For Overcomplete Linear ICA
  • 4Waheed K,Salem F M. Algebraic Independent Componenet Analysis: An Approach for Separation of Overcomplete Speech Mixtures. IEEE (2003) ,775~780
  • 5Scott,Chen S B,Donoho D L,Saunders M A. Atomic Dcomposition by Basis Pursuit
  • 6Olshausen B A, Field D J. Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by VI?, Elsevier Science, 1997,37(23) :3311~3325
  • 7Bartlett M S. Face Recognition by Independent Component Analysis. IEEE Trans On Neural Networks,2002,13(6)
  • 8Vapnik V. The Nature of Statistic Learning Theory. Springer,New York, 1995
  • 9Davies M,Mitianoudis N. Simple mixture model for sparse overcomplete ICA. IEEE Proc.-Vis Image Signal Process, 2004, 151(1)
  • 10江宇闻,黄榕波,朱思铭.基于Overcomplet ICA的声音压缩模型[J].计算机科学,2005,32(4):97-98. 被引量:3

二级参考文献11

  • 1Lewicki M S,Sejnowski T J. Learning Overcomplete Representations. Neural Computation, 1998
  • 2Lee T W,Lewicki M S,Giorlami M. Blind Source Separation of More Sourses Than Mixture Using Overcomplete Representations. IEEE Signal Processing Letters, 1999,6 (4): 87~ 90
  • 3Lewicki M S, Sejnowski T J. Learning nonlinear overcomplete representations for efficient coding
  • 4Theis F J,Lang E W. Formalization of the Two-Step Approach to Overcomplete BSS
  • 5Theis F J. A Geometric Algorithm For Overcomplete Linear ICA
  • 6Theis F J, Jung A, Puntonent C G, Land E W. Linear Geomatric ICA:Fundamentals and Algorithms. Neural Computation 2003,15:419~439
  • 7Theis F J. A Geometric Algorithm for Overcomplete ICA
  • 8Waheed K,Salem F M. Algebraic Independent Componenet Analysis: An Approach for Separation of Overcomplete Speech Mixtures. IEEE 2003. 775~780
  • 9Zhang L Q,Cichocki A,Amari S. Nature Gradient Algorithm for Blind Separation of Overdetemind Mixuture with Additive Noise
  • 10Scott, Chen ShaoBing, Donoho D L, Saunders M A. Atomic Dcomposition by Basis Pursuit

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部