期刊文献+

基于Chebyshev多项式逼近的随机van der Pol系统的倍周期分岔分析 被引量:24

Period-doubling bifurcation analysis of stochastic van der Pol system via Chebyshev polynomial approximation
原文传递
导出
摘要 应用Chebyshev多项式逼近法研究了谐和激励作用下具有随机参数的随机vanderPol系统的倍周期分岔现象.随机系统首先被转化成等价的确定性系统,然后通过数值方法求得响应,借此探索了随机vanderPol系统丰富的随机倍周期分岔现象.数值模拟显示随机vanderPol系统存在与确定性系统极为相似的倍周期分岔行为,但受随机因素的影响,又有与之不同之处.数值结果表明,Chebyshev多项式逼近是研究非线性系统动力学问题的一种新的有效方法. Chebyshev polynomial approximation is applied to the period-doubling bifurcation problem of a stochastic van der Pol system with bounded random parameters and subjected to harmonic excitations. Firstly, the stochastic system is reduced to its equivalent deterministic one, through which the response of the stochastic system can be obtained by numerical methods. Nonlinear dynamical behavior related to various forms of stochastic period-doubling bifurcation in the stochastic system is explored. Numerical simulations show that similar to their counterpart in deterministic nonlinear system, various forms of period-doubling bifurcation may occur in the stochastic van der Pol system, but with some modified features. Numerical results also show that Chebyshev polynomial approximation can provide an effective approach to dynamical problems in stochastic nonlinear systems.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第8期3508-3515,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10472091 10332030)资助的课题.~~
  • 相关文献

参考文献4

二级参考文献41

  • 1李杰.结构动力分析的若干发展趋势[J].世界地震工程,1993,9(2):1-8. 被引量:8
  • 2[1]Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196
  • 3[2]Lima B and Pettini M 1991 Phys. Rev. Lett. 66 2545
  • 4[3]Hunt E R 1991 Phys. Rev. Lett. 67 1953
  • 5[4]Chen G and Yu X H 1999 IEEE Trans. Circuit and System 46 767
  • 6[5]Matias M A and Guemez J 1994 Phys. Rev. Lett. 72 1145
  • 7[6]Liu Y, Barbosa L C and Rios Leite J R 1994 Phys.Lett. A 193 259
  • 8[8]Luo X S 1999 Acta Phys.Sin. 48 402(in Chinese)[罗晓曙 1999 物理学报 48 402]
  • 9[9]Wang R and Shen K 2001 Chin. Phys. 10 711
  • 10[12]Chen G R, Fang J Q and Hong Y G 1999 Chin. Phys. 8 416

共引文献72

同被引文献213

引证文献24

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部