期刊文献+

Lie-Poisson框架下的Dirac-Bargmann系统的可积性 被引量:1

Integrability of Dirac-Bargmann system in the Lie-Poisson framework
下载PDF
导出
摘要 研究和Lie代数so(2,1)对应的3×3 Dirac谱问题的非线性化,证明了该系统的非线性化特征值问题是具有Lie-Poisson结构的Poisson流形R3N上的广义Hamilton系统.进一步利用母函数法给出其可积性的证明. The nonlinearization of a3×3Dirac spectral problem associated with Lie algebra so(2,1)is presented.It is shown that this nonlinearized eigenvalue problem is a generalized Hamiltonian system with Lie-Poisson structure on the Poisson manifold R 3N.Further,its integrability is given by the generating function method.
作者 杜殿楼
出处 《河南科学》 2005年第4期472-475,共4页 Henan Science
基金 国家自然科学基金资助项目(10471132) 河南省青年骨干教师基金资助 河南省教育厅自然科学基金资助项目(2004110006)
关键词 Dirac族 LIE-POISSON结构 HAMILTON系统 非线性化特征值问题 Dirac hierarchy Lie-Poisson structure Hamiltonian system Nonlinearized eigenvalue problem
  • 相关文献

参考文献1

二级参考文献2

  • 1曹策问.共焦对合系与一类AKNS特征值问题[J]河南科学,1987(01).
  • 2李翊神.一类发展方程和谱的变形[J]中国科学(A辑 数学 物理学 天文学 技术科学),1982(05).

共引文献34

同被引文献14

  • 1杜殿楼,郝艳红.双非线性化Toda特征值问题的Lie-Poisson结构(英文)[J].郑州大学学报(理学版),2005,37(3):1-6. 被引量:1
  • 2曹策问.AKNS族的Lax方程组的非线性化[J].中国科学(A辑),1989,20(7):701-707. 被引量:35
  • 3Cao Cewen,Geng Xianguo. Classical integrable systems generated through nonlinearization of eigenvalue problems[C].ProcConf on Nonlinear Physics(Shanghai 1989),Research Reports in Physics. Berlin:Springer,1990:66-78.
  • 4Cao Cewen. A Classical integrable system and the involutive representation of solutions of the KdV equation[J]. Acta Math Sinica,New Series 1991,7(3):216-223.
  • 5Geng Xianguo. Finite-dimensional discrete systems and integrable systems through nonlinearization of the discrete eigenvalueproblem[J]. Journal of Mathematical Physics,1993,34(2):805-817.
  • 6Cao Cewen,Wu Yongtang,Geng Xianguo. Relation between the Kadometsev-Petviashvili equation and the confocal involutivesystem[J]. J Math Phys,1998,40:3948-3970.
  • 7Geng Xianguo,Cao Cewen. Quasi-periodic solutions of the 2+1 dimensional modified Korteweg–de Vries equation[J]. PhysicsLetters A,1999,261(5-6):289-296.
  • 8Wu Yongtang,Zhang Jinshun. Quasi-periodic solution of a new(2+1)-dimensional coupled soliton equation[J]. Journal ofPhysics A Mathematical & General,2001,34(1):193-210.
  • 9Xue Shan,Du Dianlou. A new hierarchy of(1+1)-dimensional soliton equations and its quasi-periodic solutions[J]. Chaos,Solitons & Fractals,2008,35(4):692-704.
  • 10Du Dianlou,Cao Cewen,Wu Yongtang. The nonlinearized eigenvalue problem of the Toda hierarchy in the Lie-Poissonframework[J]. Phys A,2000,285:332-350.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部