摘要
The current difference between male and female rabbit ventricular myocytes was investigated for elucidating the mechanism of longer QT interval and higher incidence of drug-associated torsade de pointes in female rabbits than in male rabbits. Whole cell patch clamp technique was used to record APD, I_to, I_K,tail, I_K1 and I_Ca,L of myocytes from left ventricular apex. There was no difference in the membrane capacitance between male and female rabbit myocytes. APD_90 was longer in female rabbits (560.4±26.5 ms, n=15) than in male ones (489.0±20.7 ms, n=14), P<0.05. In female rabbit myocytes, I_K,tail, I_to, I_K1 and I_Ca,L were 0.71±0.05 pA/pF (n=17), 8.28±1.03 pA/pF (n=18), 24.5±3.6 pA/pF (n=12) and 9.0±2.3 pA/pF (n=15) respectively. In male rabbit myocytes, they were 0.84±0.07 pA/pF (n=18), 8.60±1.20 pA/pF (n=18), 25.9±4.5 pA/pF (n=14) and 9.3±2.6 pA/pF (n=16) respectively. I_K,tail in female rabbits was significantly lower than that of male rabbits (P<0.05), but there was no difference in I_to, I_K1 and I_Ca,L between male rabbits and female rabbits (P>0.05). The lower I_K,tail of female rabbit myocytes may contribute to the longer repolarization and the higher incidence of drug-associated torsade de pointes.
The current difference between male and female rabbit ventricular myocytes was investigated for elucidating the mechanism of longer QT interval and higher incidence of drug-associated torsade de pointes in female rabbits than in male rabbits. Whole cell patch clamp technique was used to record APD, I_to, I_K,tail, I_K1 and I_Ca,L of myocytes from left ventricular apex. There was no difference in the membrane capacitance between male and female rabbit myocytes. APD_90 was longer in female rabbits (560.4±26.5 ms, n=15) than in male ones (489.0±20.7 ms, n=14), P<0.05. In female rabbit myocytes, I_K,tail, I_to, I_K1 and I_Ca,L were 0.71±0.05 pA/pF (n=17), 8.28±1.03 pA/pF (n=18), 24.5±3.6 pA/pF (n=12) and 9.0±2.3 pA/pF (n=15) respectively. In male rabbit myocytes, they were 0.84±0.07 pA/pF (n=18), 8.60±1.20 pA/pF (n=18), 25.9±4.5 pA/pF (n=14) and 9.3±2.6 pA/pF (n=16) respectively. I_K,tail in female rabbits was significantly lower than that of male rabbits (P<0.05), but there was no difference in I_to, I_K1 and I_Ca,L between male rabbits and female rabbits (P>0.05). The lower I_K,tail of female rabbit myocytes may contribute to the longer repolarization and the higher incidence of drug-associated torsade de pointes.