摘要
文中仅涉及亚纯函数的单级零点或极点,证明了亚纯函数的单充满圆存在性定理。
In this paper its main result: Theorem 1, let f(z) be a merom orphic function of non constant in |z|≤2R. Let two number m>4 and q> 3. If there not exist z in a circular ring k: r<|z|<R for each h,0<h≤<1/16,such that disc|z-z0|<1/q |z| be a simple fulling disc of f(z) with ex-ponent m. Then there exist finite spherical circle (?)|z,zo|≤rj(j=1,?,…,P) satisfy following.2 ) for each value z of not belong to we have v1 (k,f,z )≤(?). Where a be a positive aumberical constant.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
1989年第5期462-466,共5页
Journal of Xiamen University:Natural Science