摘要
考虑一类积分泛函,它的被积函数依赖于u的梯度和参数ε,并且满足某种非标准增长条件,本文证明该泛函的极小在所考虑区域G内局部有界;如果极小函数满足适当的限制条件,那么它在G内有局部Holder连续的一阶梯度,并且在G的任何紧子集上,极小函数的梯度的Holder系数和Holder指数与极小函数u以及参数ε无关.
Consider on G an integral functional of which the integrand depends on thegradient of u and on a parameter ε and satisfies certain nonstandard growth conditions。The local boundedness of the minimizer of the functional is proved. Furthermore, if theminimizer,u,satisfies suitable restrictive conditions,then it has locally Hldercontinuous fisst gradient;and on any compact suoset of G the Holder coefficient and theHolder exponent of the gradient of the minimizer are independent of u and ε,theminimizer and the parameter,respectively。
出处
《中山大学学报(自然科学版)》
CAS
CSCD
1995年第3期10-13,共4页
Acta Scientiarum Naturalium Universitatis Sunyatseni
关键词
积分泛函
非标准增长条件
极小
正则性
泛函数
integral functional,nonstandard growth condition,minimizer,everywhereC ̄(1,a)regularity