摘要
Fourier变换在偏微分方程理论中占有相当重要的地位。本文通过经典的Fourier变换求解一维、二雏热传导方程Cauchy问题的方法,推广Fourier变换到速降函数空间ψ(R ̄n)和ψ(R ̄n)上的线性连续泛函ψ'(R ̄n)广义函数空间上,求出了Cauchy-Riemann方程、热传导方程、常系数椭圆算子方程以及形如的方程的Cauchy问题的基本解。最后引入了Fourier变换的其它几种形式,并用三角函数形式的Fourier变换,求解了两个物理实际问题。
Fourier transform plays a very important role in the theory of partial differential equa-tions.In this article,first,we solve the problems of one-dimensional and two-dimensionalheat conduction equations with only initial conditions(Cauchy problem)from the general de-fination of Fourier transform. Secondly,we give the defination of Fourier transform on ψ (R ̄n)andψ'(R ̄n).find the basic solutions of Cauchy-Riemann equation、heat conduction equa-tion、the elliptic operator with contstant coefficents and the equations form as with only initial conditions. Finally,we use the other forms of Fourier transform and solve two physical problems from the Fourier sine and cosine integrals transforms.
出处
《重庆邮电学院学报(自然科学版)》
1995年第1期63-73,共11页
Journal of Chongqing University of Posts and Telecommunications(Natural Sciences Edition)
关键词
傅立叶变换
柯西问题
偏微分方程
热传导方程
fourier transform,Cauchy problem,heat conduction equation,elliptic operator