期刊文献+

非线性规划U—D分解方法及其在神经网络训练中的应用 被引量:3

U-D FACTORIZATION-BASED NONLINEAR PROGRAMMING METHOD AND ITS APPLICATION IN NEURAL NETWORK TRAINING
下载PDF
导出
摘要 提出一种有效的U-D分解DFP和BFGS算法.该算法解决了H阵的正定性问题,保证了算法的数值稳定性,并大大提高了计算效率.对H阵的计算量分析表明,该算法的计算效率比普通方法高20%,比普通平方根方法高0.4n(n为H阵维数)倍.神经网络训练的应用表明,新算法比普通DPP和BFGS方法更有效、更准确. To solve convergence rate problems of often used DFP and BFCS methods, the stable construction of inverse Hassian matrix are presented. To get high numerical stability and computational efficiency, U-D factorization-based DFP and BFGS algorithms are developed. In the new methods the positive definiteness of the inverse matrix H is ensured and both the stability and convergence of the algorithm is improved. By using rank-one U-D factorization updates of H, the numerical accuracy and efficiency are increased. Operational counts for computing H show that the efficiency of the new algorithm is increased by 20% and the storages of matrix H is reduced by 50%. Results of several numerical example show that the optimization problems can be solved by using the programming methods presented in this paper and accurate results may be obtained.
作者 史志科
出处 《自动化学报》 EI CSCD 北大核心 1995年第6期734-738,共5页 Acta Automatica Sinica
关键词 非线性规划 神经网络 学习算法 Nonlinear programming, large scale problem, neural network, learing algorith, unconstrained optimization.
  • 相关文献

参考文献1

二级参考文献1

  • 1史忠科,航空学报,1989年,10卷,B501页

共引文献4

同被引文献4

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部