摘要
本文使用边界积分方程和分离奇异主部等技巧,将瞬态反平面动力学问题归结为求解Laplace变换域上的Cauchy型奇异积分方程,并严格证明了该方程与Sih导出的对偶积分方程等价。本文还进一步研究了两条裂纹间动态影响,使用高精度的奇异积分方程算法及Laplace数值反演法,文中计算了若干典型例子的动态应力强度因子,有关结果表明本文方法是成功和可靠的。
in this paper, by use of the boundary integral equation method and the technique of separating dominant singular part, the antiplane dynamic problem is reduced to solving Cauchy singular integral equation in Laplace transform space. The equation is strictly proved to be equivalent with the dual integral equations obtained by Sih. The dynamic influence between two parallel cracks is also investigated. By use of the numerical method with high precision for singular integral equation and Laplace numerical inversion, several typical examples are calculated and their dynamic stress intensity factors are obtained. The result shows that the method proposed in this paper is successful and reliable.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
1995年第2期33-39,共7页
Journal of Lanzhou University(Natural Sciences)
基金
甘肃省科委科技攻关项目
关键词
断裂动力学
奇异积分方程
应力强度因子
柯西型
fracture dynamics
Cauchy singular integral equations
equivalence proof
dynamic stress intensity factors