摘要
本文使用最小板块的思想,揭示了泛代数领域中任一分配簇的任一代数都具有两个性质:(1)投射意义下一致极小对是存在的,(2)存在相对于整个簇而言的极小对投射的一致上界。用以上的结果,给出了著名的有穷基定理的一个简单的、构造性的证明。
By using the idea of so-called minimal blocks as a medium, we are able to provethe following two conclusions: (1) given any congruence-distributive variety in any algebra of therelated variety, there exists under projectivity a uniform minimal pair for each principal congru-ence.(2) For this variety, there exists a uniform boundness on the lengths of the projectivities.Furthermore, as a simple consequence of above results we readily provide a relatively short, prooffor the famous Finite Base Theorem.
出处
《数学进展》
CSCD
北大核心
1995年第4期320-326,共7页
Advances in Mathematics(China)
基金
科学院归国留学人员基金
关键词
分配簇
一致极小对
有穷基
代数簇
一致有界性
C-D variety
minimal blocks
projection
umform minimal pair
finite base