摘要
本文提出了一种复杂系统模糊建模及控制的神经网络方法。利用改进的pi-sigma神经网络,对模糊规则的结论参数和隶属函数进行在线修正,实现模糊规则的自组织。这种方法被用于降水量预报和机器人解耦控制,取得了满意的仿真结果。为增强神经网络仿真算法的快速性,本文采用了一种基于向量的数据结构,并用标识阵指示神经元的连接状态,以实现有效的内存运算。
A neural network approach to fuzzy modelling and control has been proposed.The newscheme is based on an updated pi-sigma neural network and can realize on-line fuzzy rule self-organiza-tion.The new method is applied to rainfall prediction and robot control.In both cases,satisfyingsimulation results are obtained.A vector-based neural network data structure and an index array whichindicates the connection state of the neurons are adopted to increase the simulation speed.
出处
《系统仿真学报》
CAS
CSCD
1995年第2期46-55,共10页
Journal of System Simulation
基金
国家自然科学基金
关键词
模糊建模
模糊控制
神经网络
仿真
Fuzzy modelling and control Aritificial neural network Rainfall prediction Robotcontrol