摘要
定常态渠道法采集地下卤水[1]的过程可由一类拟线性椭圆型方程的定解问题来描述,该定解问题在区域内部的曲线(集卤渠)上满足等值面边界条件。在适当假设下该定解问题可简化为求一线性定解问题的非负解。本文给出了该非负解存在唯一的充分条件。
The steady-state course of underground brine catchment and extraction using diggingditch method can be described by a solution-determination problem of a qusilinearellipticpartial differential equation. On the curve that represents the brine-catchment ditch inside the domain considered, the elevation of the underground brine satisfies constant-value-surface boundary condition. Under appropriate hypothesis, the problem can be simplified to finding non-negative solution to a linear elliptic problem. Sufficient conditions under which there exits a unique nonnegative solution to the simplified linear problem are given.
出处
《盐湖研究》
CSCD
1995年第3期70-73,共4页
Journal of Salt Lake Research
基金
中科院青年科学基金
关键词
定常态渠道法
采卤
卤水
数学模型
The steady-state course of underground brine catchmentand extraction, Elliptic solution-determination problem, Constant-value-surface boundary condition, Nonnegative solution.