摘要
对两相依回归方程系统:Y_i=X_iβ_i+ε_i(i=1,2),E(ε_i)=O,Cov(εi_,ε_j)=σ_(ij)I,刘金山提出了一种可优效于最佳线性无偏估计的新估计.本文结果表明,在线性估计类中β_i是β_i的可容许估计;在均方误差准则下,β_i可优效于协方差改进估计和LS估计bi.本文还提出了关于估计占优充要条件的检验统计量和等价假设检验方法.
For the system of two seemingly unrelated regres8iOns:Y_i=X_iβ_i+ε_i(i=1,2)with E(ε_i)=0,Cov(ε_i,ε_j)=σ_(ij)I,Liu Jinshan intreduced a simple estimator of β_i given bywhere is the LS-estimatior. In this paper, the admissibility of within the class of linear estimatiors is proved. Taking the mean square error(MSE) as the standard for comparison, this paper shows that may work better than a com-peting estimator proposed and may perform better than the LS- es-timator bi.And deriv enecesstsary and sufficient-conditions for MSE-dominance and proposesome equivalence test;which are independent of matrix Σ=(σ_(ij)) for the condItions.
出处
《郑州大学学报(自然科学版)》
1995年第3期19-25,共7页
Journal of Zhengzhou University (Natural Science)
关键词
相依回归方程
估计量
可容许性
有效性
线性回归
seemingly unrelated regression
estimator
mean squared error
admissibili-ty
efficiency