摘要
本文给出一个新的有限维对合系,并由此证明WKI特征值问题在位势与谱函数之间的Bargmann约束下,被非线性化为一个Liouville完全可积的Hamilton系统,最后,我们由可换流的对合解获得WKI方程族的每一方程解的表示.
A new finite-dimensional involutive system is presented,and theWKI hierarchy of nonlipear evolution equations and their commutator representationsare discussedin this article. By this finite-dimensional involutive system,it is proventhat under thd Bargmann constraints thc WKI eigenvalue problem is nonlinearized as acompletely integrable Hamiltonian system in the Liouville sense. Moreover,theinvolutive representation of solutions of each equation in the WKI hierarchy is obtainedby making use of the solution of two compatible system.
出处
《辽宁大学学报(自然科学版)》
CAS
1995年第A00期26-31,共6页
Journal of Liaoning University:Natural Sciences Edition
基金
辽宁大学青年科学基金