摘要
设G是一个定义了某种序关系的局部紧Hausdorff空间,考虑G上形如x(t)=w(t)的广义Volterra型积分方程,给出了这样一个方程存在唯一连续整体解的充分条件,并由此导出了相应的积分不等式结果。
Let G be a locally compact Hausdorff space in which a certain order relation is defined.Generalized Voltera's in tegral equations on G of the form ds are studied.Certain sufficient conditions for guaranteeing a unique continuous global solu-tion for such equations are given Corresponding results with respect to the integral inequali-ties are derived.The main tools used are the principle of contraction mapping and thestandard continuous extension method.
出处
《华中理工大学学报》
CSCD
北大核心
1995年第A01期100-105,共6页
Journal of Huazhong University of Science and Technology
关键词
伏特拉积分方程
积分不等式
连续解
广义
ordered locally compact space
Volterra's integral equation
integral inequality