摘要
提出了我国古代论证几何所依据的原始命题(即几何的公理),指出“存在正方形”连同“出入相补原理”、“极限原理”、“刘-祖截面原理”以及长方形面积公式和长方体体积公式确定了我国古代几何的性质,奠定了我国古代几何的基础.并把以上内容与《欧几里得几何原本》
This article puts forward the primitive propositions(i.e.geometry axioms)bywhich to prove .geometry existed in ancient China. This article also points out that'existence of squares','Out-In Complementary Principle','the principle of limit', 'Liu-Zu cross -section princeple', 'the area formula for rectangle and the volume formula for cuboid' determine the nature and lay the foundation of geometry in ancient China. The above theories are compared with those corresponding parts in the book-The Thirteen Books of Euclid's Elements.
出处
《陕西师大学报(自然科学版)》
CSCD
1995年第1期105-111,共7页
Journal of Shaanxi Normal University(Natural Science Edition)
关键词
古典数学
正方形
出入相补原理
几何学
科学史
classical mathematics
square
out-in complementary principle
limit principle
Liu-Zu cross-section principle