摘要
本文给出了两个Ramsey数的平均值定理且初步探讨了它们的应用:证明了由此二定理可得R(3,5)≤14,R(n,n)≤R(n-2,n)+3R(n—1,n—1)-1以及当P>45时(5,5,P)图必含(3,5,11)子图等性质,本文指出,寻找出Ramsey数R(m,n)的极图中某类特殊子图是个关键.
In this paper, We give two average value theorems, and initially.explore their applications.We prove R(3,5)≤ 14, R(n,n)≤ R(n-2,n)+3R(n-1,n1)-1 and some Properties such as every(5,5)-graph must contain a (3,5, 11)-graph as its subgraph, when p >45. Perhaps, searching aspecial subgraph is the key for finding the extremal r(m, n)-graph
出处
《上海大学学报(自然科学版)》
CAS
CSCD
1995年第4期365-368,共4页
Journal of Shanghai University:Natural Science Edition
基金
上海市科委自然科学基金