摘要
研究了Sasakian空间型中切触分布的积分子流形,得到了伪脐积分子流形的两个内蕴刚性定理,作为推论得到:设M是M2n+1(c)(c>-3)中紧致极小积分子流形,如果,则M全测地.
The integral submanifolds of a contact distribution of Sasakian space form is studied. Two intrisic rigidity theorems of the psetldo-umbilited integral submanifolds are proved and the corollary is obtained.Let M be a compact minimal integral submanifold of a Sasakian space form M2n-1(c), If. Then M is totally geodesic.
出处
《陕西师大学报(自然科学版)》
CSCD
1995年第2期1-4,共4页
Journal of Shaanxi Normal University(Natural Science Edition)
关键词
黎曼几何
Sasakian空间型
切触分布
伪脐积分子流形
Riemann geometric
Sasakian space form
contact distribution
pseudo umbilical integral submanifold