摘要
主要讨论两个集合的近渡点及最近点对存在性.引入弱囿紧性概念,它与可近性都起着重要作用.引入两个仿射集M,M'平行的概念,详细论述了两者平行或不平行且不相交情形下M,M’的近渡点及最近点对,当着二个中之一是直线时又建立更多特殊性质.
The existence of shortest-cross points and the pair of shortes points are discussed.The conceptof weakly bounded compactness is introduced.It together with prximinality plays an importantrole. We also define parallelism of two affine sets M,M’.We consider shortest-cross pointsof M,M’under the cndition that M‖M’or M M’and which are interect.Some moreparticular porperties are buiIt in case when one of thase affine sets is a straight line.
出处
《暨南大学学报(自然科学与医学版)》
CAS
CSCD
1995年第1期14-15,共2页
Journal of Jinan University(Natural Science & Medicine Edition)
关键词
近渡点
弱囿紧集
仿射集
最近点对
集合
shortest-cross point
best proximity pair,weakly bounded compact set’parallelism in displaced sense