摘要
通过考虑晶格对称性,提出了一种便于在实空间重整化群中处理大Kadanoff原胞的方法,在此方法中,对构形求和转化为对基本图形求和.利用此方法计算出了二级简平方晶格的临界指数.
Taking into account the symmetricity, an convenient approach to treat large Kadanoff blocks in real space renormalization groups is introduced.In the approach,summation over configuration is transfered to summation over some basic diagrams.To demonstrate the convenience of theapproach, critical exponents for nine spin square blocks on a two dimensional lattice for the nearest neighbor Ising model are calculated.
出处
《暨南大学学报(自然科学与医学版)》
CAS
CSCD
1995年第1期55-59,共5页
Journal of Jinan University(Natural Science & Medicine Edition)
关键词
实空间重整化群
伊辛模型
卡丹诺夫原胞
real space renormalization groups
Ising model
Kadanoff blocks
critical exponent