摘要
当输入是无穷集或区域时,通过构造一个上鞅,本文证明了简单Perceptron学习算法的收敛性。
In this paper,we extend the convergence of the simple perceptron learning rule to the case that the set of inputs is infinity or a region。 When the set of inputs is linearly separable,we prove that a simple perceptron always improves its performance。As the set of the inputs is ‘strong’linearly separable,then within finite time the connections among units converge to a limit which separates the inputs.The convergence rate is also estimated。
出处
《北京大学学报(自然科学版)》
CAS
CSCD
北大核心
1995年第1期20-27,共8页
Acta Scientiarum Naturalium Universitatis Pekinensis
关键词
上鞅
线性可分
收敛
鞅
随机过程
simple perceptron
supermartingale
linearly separable