期刊文献+

随机场的极大不等式及其应用

Maximal Probability Inequality andTruncation Property for Random Field andIts Application
下载PDF
导出
摘要 一些一元上(下)鞅序列的极大概率不等式在多元的场合不再成立,其它的一些不等式在多元场合有类似的推广但不能直接用来证明随机场部分和的重对数律收敛性。本文给出一些特殊的随机场的极大概率不等式和一些较细的随机场的截断性质。利用这些性质证明了平稳遍历1/4鞅差随机场部分和的重对数律收敛性。 Certain classical maximal probability inequalities for ordinary discrete-time submarting-ales(or supermartingales )are not(in general)true for discrete-time two dimensionally indexed sub-martingales(or supermartingales)and some others have their useful extensions but can not be used directly when dealing with the LIL convergency results for partial sums of two dimensionally in-dexed martingale difference。Maximal probability inequalities for two dimensionally indexed mar-tingale difference in other forms and truncation properties for random fields was given to show the LIL convergency results for partial sums of two dimensional 1/4 martingale difference。
作者 何书元
出处 《北京大学学报(自然科学版)》 CAS CSCD 北大核心 1995年第1期40-54,共15页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金及国家教委博士点基金
关键词 鞅差 随机场 重对数律 概率 不等式 martingale difference random fields LIL
  • 相关文献

参考文献3

  • 1Jiang J,Ann Math B,1991年,12卷,4期,432页
  • 2Jiang J,1990年
  • 3Wang X,J Appl Prob Statist,1985年,1卷,148页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部