期刊文献+

电学问题中的边界元方法及计算机模拟 被引量:4

Boundary Element Method in electric Problems and Computer Simulation
下载PDF
导出
摘要 传输线的性能好坏直接影响着通信效果。由于工艺水平的限制,在各类传输线的制造中均可能出现偏差,采用边界元方法研究同轴电缆轴心偏离程度及对实际传输特性的影响问题,为传输线的制造提供了计算机模拟及相应的数据,并为数学上无法求出解析解的电学问题提供了一种可行的研究方法。 The performance of transmission line exerts a direct influence on communicationefficacy. As a result of the restriction of the state of the arts,it's entirely possible to introducesome deviation into all kinds of transmission line during manufacture. A boundary elementmethod has been used in this paper to discuss the eccentric degree of coaxial cable and its infiu-ence on actual transfer characteristics.We provide computer simulation and appropriate datafor manufacture of transmisson line. It can also be used as a feasible method for electricityproblem which can not be solved analytically.[
出处 《北京联合大学学报》 CAS 1995年第3期14-21,共8页 Journal of Beijing Union University
关键词 边界元 电位 平行电缆 电学 计算机模拟 boundary element method electric potential parallel cable special kinds of ca-ble
  • 相关文献

参考文献1

  • 1曹昌祺.电动力学[M]人民教育出版社,1962.

同被引文献14

  • 1杨德全,吕树慧.对绕两柱体内流问题的流场和压力场的研究[J].内蒙古民族大学学报(自然科学版),2001,16(4):347-351. 被引量:6
  • 2张国有,杨德全,赵改平.传输电缆线电场的高次元分析方法[J].内蒙古民族大学学报(自然科学版),2004,19(3):261-263. 被引量:1
  • 3[1]Klingert J A,Lyno S,Tobiar C W.Evaluation of current distribution in electrode systems by high-speed digital computers[J].Electrochimica Acta,1964,9:297-311.
  • 4[2]Winslow A M.Numerical solution of the quasillnear Poisson equation in a nonuniform triangle mesh[J].J of comput Physics,1967,(1-2):149-172.
  • 5[7]杨德全,赵忠生.边界元理论及应用(再版)[M].北京:理工大学出版社,2003.
  • 6[1]Klingert J A,Lyno S,Tobiar C W.Evaluation of current distribution in electrode systems by high-speed digital computers [J].Electrochemical Acta,1964,9:297-311.
  • 7[2]Winslow A M.Numerical solution of the quasillnear Poisson equation in a nonuniform triangle mesh[J].J of comput Physics,1976,(1-2):149-172.
  • 8杨德全 赵忠生.边界元理论及应用[M].北京:北京理工大学出版社,2003,1..
  • 9杜庆华.姚振汉.岑章志.中国工程中边界元方法研究的十年[C]//第二届工程中边界元方法会议论文集.北京:清华大学出版社.1998:1-2.
  • 10Winslow A M. Numerical solution of the quasillnear poisson equation in a nonuniform triangle mesh [J]. J of computPhysics. 1967(1-2) :149-172.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部