摘要
对于欧氏空间1Rn中的一个有界闭凸集E,若则必有1Rn中某个以为心r为半径的闭球B(p,r),使B(p,r),而(p,r)。本文证明了当X为Hilbert空间时,上述结论仍正确,但对一般的Banach空间X,却不一定正确,而且我们给出了一个反例。
Let Ebe a closed bourded convex set in Rn, it is known that for any E, there exists a closed ball B(p,r) with radiu r and center p sucll that E belongs to B(p,r) and B(p,r) In this Paper we prove that the above conclusion hold for thilbert space, instead of general Banach space and we give a conterexample.
出处
《长春光学精密机械学院学报》
1995年第4期46-47,共2页
Journal of Changchun Institute of Optics and Fine Mechanics