摘要
给出了求解非线性方程组的秩1反拟牛顿迭代法,并证明了其在一定条件下收敛及具有超线性敛速或二阶敛速,且其每步的计算量少于著名的Broyden秩1修正方法的计算量,计算实例表明,该方法是较有效的。
This paper presents a single rank inverse quasi-Newton iterative method for solvingnon-linear simultaneous equations,and proves that it is superlinear convergence or quadraticconvergence under some conditions. The amount of calculation per iterative step of this method isless than that of Broyden,s single rank quasi-Newton method. The numerical results show thehigh efficiency of the new method.
出处
《大连理工大学学报》
CAS
CSCD
北大核心
1995年第6期749-753,共5页
Journal of Dalian University of Technology
关键词
牛顿法
非线性方程
迭代法
Newton method
non-linear equations
iteration methods