摘要
本文引进了函数在一点的本性振幅的概念,在Riemann积分意义下,证明了定理:设有界函数f定义于闭矩形I,在I上Riemann可积的充要条件是对任意η大于零,E_η是一个零面积集。
In this paper,we introduce the concept for essential oscillation of a functions at a point.The following theorem is proved in the manner for Riemann integral.Theorem. Assume a function f is defined and bounded on a closed rectangle I=[a,b]×[c,d].The necessary and sufficient condition for f to be Riemann-integrable on I is that area of Eη={M|M∈I and ω[f,M]≥η} is zero for any η>0.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
1995年第6期9-13,共5页
Journal of Southeast University:Natural Science Edition
关键词
数学分析
连续性
黎曼积分
黎曼可积函数
mathematical analysis
Riemann integrals
continuity
oscillation