摘要
本文采用人工神经网络的线性网络法(LMS)优化高效液相色谱的分析条件,考察了样本集类型和不同初始权值对优化结果的影响.结果表明,模拟的精度与样本集类型有关,而在一定置信区间与初始权值无关.
One type of artificial neural networks, least means square, was adopted to optimize separation conditions for mixture of phenols with HPLC. The effect of type of samples and initial weight on prediction values was discussed. The experimental results showed that the precision of predicting values depends directly on the type of samples without relation to initial weight.
出处
《分析化学》
SCIE
EI
CAS
CSCD
北大核心
1995年第7期779-782,共4页
Chinese Journal of Analytical Chemistry
基金
国家自然科学基金资助项目
关键词
高效液相色谱
参数优化
酚
LMS
苯二酚
Artificial neural network, High-performance liquid chromatography, parameter optimization, phenols