摘要
证明了半素环R为交换的,如果它满足条件(ak):对任意a,b∈R,存在一个字长>K且含有(xy)^2(或(yx)×2)的字Wx(x,y)及一个能被Wx(x,y)整除的整系数多项式fx(x,y),使得ab^k-fx(a,b)∈Z(R),其中K是一个给定的正整数,Wx(x,y)与fx(x,y)均可随X=(a,b)而变,Z(R)是环R的中心。
Proves that a semiprime rings R with centre Z(R) is commutative if it satisfies the condition(αk):for arbitrary a,b ∈ R,there exist a word W_x(x,y) containing (xy) ̄2(or(yx) ̄2) and its length>K and a polynomial fx(x,y) with integer coefficients which can be divided exactly by W_x(x,y) such that ab ̄K-fx(a,b) ∈ Z(R),where K is a fixed positive integer,W_x(x,y) and f_x(x,y) can vary as X=(a,b)varies.
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
1995年第2期21-24,共4页
Journal of Fujian Normal University:Natural Science Edition
基金
福建省自然科学基金
关键词
素环
亚直和
半素环
结合环
交换性定理
word
subdirectly irreducible ring
prime ring
subdirect sum