摘要
V.P.Camillo证明了如果J(R)是有限生成,则交换内射的QF-1环是PF环。但对于一般情况,这还是一个未解决的问题。本文取消J(R)是有限生成的条件,在其它条件下,比如J(R)是诣零且J/J2有限生成的条件,也证明了交换内射的QF-1环是PF环。同时,在挠理论下讨论了右QF-1环与QF-1分式环的关系。
It is proved by V.P.Camillo that if J(R) is finitely generated. a commutative injective QF-1 ring R is PF.However,ingeneral,it is an open question whether or not a commutative injective QF-1 ring is PF.In this paper.show that it is true if J(R) has the property 1(e.g.J(R) is nil)and J(R)/J(R) ̄2 is finitely generated.Meanwhile also discusses the relationship between right QF-1 rings and QF-1 rings of quotients
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
1995年第2期25-29,共5页
Journal of Fujian Normal University:Natural Science Edition
基金
福建省自然科学基金