摘要
在不采用任何近似的板理论的条件下,给出一种解横观各向同性圆板在表面应力自由、边缘承受轴对称分布应力和(或)位移时的线弹性边值问题的半解析数值方法,并且说明某些典范问题的解在圆板的位移、应力混合型边界条件的圣维南原理的表述中的应用.
ithout using any approximate plate theories, this paper gives a semi-analytic numerical method for solving linear elastostatic boundary value problems of transversely isotropic circular plates with surfaces stress-free and edges loaded by axi-symmetrically distributed stresses and (or) displacements. Also included in the paper is the application of solutions of some canonical problems in the statements of St. Venant's.principle for circular plates under mixed boundary conditions of displacements and stresses.
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
1995年第6期653-660,共8页
Journal of Fudan University:Natural Science
关键词
轴对称
弹性圆板
横观各向同性
圣维南原理
axi-symmetric circular elastic plates
transversely isotropy
St. Venant's principle for mixed boundary conditions