摘要
本文证明了下述结果:设M是紧致2维无边Riemann流形。x(M)是M的Euler示性教.K为(M,g)的Gauss曲率.则对于给定的K∈C∞(M)具X(M)<0的方程面Δu-K+Ke2u=0有解u∈C∞(M),当且仅当minK<0.
In this peper,the following result is proved: Let M be a compact two-dimensional Riemanniat manifold without boundary and let X(M) be the Euler characteristic of M. Let K be the Gaussian curvature of(M, g).Then,for given K ∈C∞(M),the equation ΔU-K+Ke2u=0 with X(M)<0 has a solution U∈C∞(M) and only if minK< 0.
关键词
变分法
微分几何
高斯曲率
欧拉示性数
riemannian manifold
Euler characteristic
Gaussin curvature
variational method