期刊文献+

三维精确可解统计模型──Baxter-Bazhanov模型的可积性条件

The Integrability Condition of Three-Dimensional Exactly Solvable Model-Baxter-Bazhanov Model in Statistical Mechanics
原文传递
导出
摘要 从手征Potts模型推导出三维精确可解Baxter-Bazhanov模型的“可逆性”及“星一方”关系,从而说明其可积性条件──四面体方程是手征Potts模型星──三角关系的一个结论.若把玻尔兹曼权参变数表示为Zamolodchikov角变量形式,其附加条件自然成立.值得指出的是,由本文处理方法可以得出三维可解统计模型的星-三角关系,它包含了Bazhanov和Baxter的结论. From the chiral Potts model the'inversion'and'star-square'relations of the Baxter-Bazhanov model are obtained.This means that the tetrahedron equation which is a commutativity condition for the three-dimensional cubic lattice is a consequence of the star-triangle relation of the chiral Potts model.The additional constraints in tetrahedron equation hold naturally when the Boltzmann weights are parametrized in terms of the Zamolodchikov angle variables.It is point out that the star-triangle relation of the three-dimensional model can be gotten by using the method given in this paper,which includes the result of Baxter and Bazhanov's
出处 《高能物理与核物理》 CSCD 北大核心 1995年第2期123-130,共8页 High Energy Physics and Nuclear Physics
关键词 三维 精确可解 统计模型 可积性 条件 chiral Potts model,Baxter-Bazhanov model,'star-square'relation,tetrahedron equation,star-triangle relation.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部