期刊文献+

应用WCA微扰理论推算非极性液体比热容的新方法 被引量:1

A New Method to Calculate Specific Heat Capacity of Nonpolar Liquids Using WCA Perturbation Theory
下载PDF
导出
摘要 本文首次将统计热力学中的Weeks-Chandler-Anderson(简称WCA)微扰理论应用于非极性液体定容比热容和定压比热容的推算,用一些液体的p-v-T实验数据拟合了理论中所用LJ势能函数的势能参数,并提出一个通用关联式。本文方法具有通用性,在编制的计算程序中只需输入物质的临界温度、临界比容、偏心因子等就能算出相应的比热容,工程应用十分方便。 A new method utilizing the WCA perturbation theory of statistical thermodynamics to calculate the specific heat capacity of nonpolar liquids is introduced. The potential energy parametera of L-J potential energy function of certain substances are simulated from liquid p-v-T experimental data by appling equation of state deduced from WCA perturbation theory. The specific heat capacity at constant volume and the specific heat capacity at constant pressure of liquids at a given state can then be calculated when the critical parameters T_C v_C and acentric factor are available. Although this method is not fit for direct calculation for its complexity,it is efficient, simple and practical in computerized calculation.
出处 《高校化学工程学报》 EI CAS CSCD 1995年第2期111-117,共7页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金
关键词 微扰理论 比热容 势能参数 WCA Perturbation theory, Thermophysical properties of fluid, Specific heat capacity
  • 相关文献

同被引文献15

  • 1吴建中,陆九芳,李以圭.用微扰理论研究链状流体的状态方程[J].高校化学工程学报,1995,9(1):1-8. 被引量:1
  • 2Rosenfeld Y, Levesque D , Weis J J. Free-energy model for the inhomogeneous hard-sphere fluid mixture: triplet and higher-order direct correlation functions in dense fluids [J]. J Chem Phys, 1990, 92(11): 6818-6832.
  • 3Boublik T. Hard-sphere equation of state [J]. J Chem Phys, 1970, 53(1): 471-472.
  • 4Mansoori G A, Carnahan N F, Starling K E , Leland T W, Jr. Equilibrium thermodynamic properties of the mixture of hard spheres [J]. J Chem Phys, 1971, 54(4): 1523-1525.
  • 5Sindelka M, Boublik T. Simulations in ternary hard sphere mixtures [J]. Fluid Phase Equilib, 1998, 143(1-2): 13-27.
  • 6Koyuncu M, Demirtas A, Ogul R. Excess properties of liquid mixtures from the perturbation theory of Barker-Henderson [J].Fluid Phase Equilib, 2002, 193: 87-95.
  • 7Massengill D R, Miller R C. Temperature dependence of excess volumes for simple liquid mixtures: N2+Ar, N2+Ar+CH4 [J]. J Chem Thermodyn, 1973, 5: 207-312.
  • 8Reiss H, Frisch H L, Lebowitz J L. Statistical mechanics of rigid spheres [J]. J Chem Phys, 1959, 31(2): 369-380.
  • 9Lebowitz J L, Rowlinson J S. Thermodynamic properties of mixtures of hard spheres [J]. J Chem Phys, 1965, 41(1): 133-138.
  • 10Patra C N, Ghosh S K. Density functional approach to the structure of uniform fluids [J]. J Chem Phys, 1997, 106(7): 2762-2770.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部