摘要
本文证明了:若对二部竞赛图T的每一顶点v,总有min{d_T ̄-(v),d_ ̄-(v)}≥k≥3,则T中存在长度至少为4k的AD路或AD回路,除非T同构于一类例外图之一。作为推论,我们得到:正则二部竞赛图T含有ADH回路,除非T属于一类例外图。
Let T be a bipartite tournament.This paper shows that if for each vertex v in T,then T contains either an antidirected cycle or an antidirected path of length at least 4k,except for a described case. As a corollary of this result, we obtain that every regular bipartite tournament contains an antidirected Hamilton cycle except for a described case.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
1995年第2期203-208,共6页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家和山西省自然科学基金