摘要
本文讨论了求解二维非线性Volterra积分方程的Nystrom方法,得到了数值解的逐项渐近展开,从而可进行Richardson外推,提高数值解的精度。
In this paper,the asymptotic expansion for numerical solution of two-dimensional nonlinear Volterra integral equations by the trapezoidal Nystrom method is considered.We show that the trapezoidal Nystrom solution admits an error expansion in even powers of the step-sizes h and k, beginning with terms in h2 and k2. So that the Richardson's extrapolation can be done.This will increase the accuracy of numerical solution greatly.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
1995年第3期275-284,共10页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金
关键词
非线性
积分方程
数值解
渐近展开
伏特拉
Two-Dimensional Nonlinear Volterra Integral Equation
Nystrom Method
Asymptotic Expansion
Richardson Extrapolation.