期刊文献+

中厚矩形板的非线性动力稳定性分析 被引量:4

ANALYSIS OF NONLINEAR DYNAMICAL STABILITY FOR MODERXTELY THICK RECTANGULAR PLATES
下载PDF
导出
摘要 本文以Timoshenko-Mindlin假设及Hamilton原理为基础,建立了中厚板的非线性运动控制方程。应用参数增量法求解了四边简支矩形板在纵横谐载共同作用下的非线性动力稳定性问题,并对影响其动力稳定性的若干因素进行了讨论。 Based on Timoshenko-Mindlin kinematic hypotheses and Hamilton's principle,the governing motion equations for geometrically nonlinear middle-thick rectangular plate are derived. By using incremental parameter method, the nonlinear dynamic stability of simply supported plate under in-plane and transverse harmonic loads is analysized. The effects of some parameters on the dynamic stability are discussed.
机构地区 湖南大学
出处 《工程力学》 EI CSCD 1995年第3期97-106,共10页 Engineering Mechanics
关键词 非线性 动力稳定性 中厚板 弹性力学 moderately thick rectangular plate, nonlinear behaviour, parameter incrementalmethod, dynamic stability.
  • 相关文献

同被引文献23

  • 1鲍洛金 符·华著 林砚田译.弹性体系的动力稳定性[M].北京:高等教育出版社,1960..
  • 2傅衣铭,Int J Non-linear Mechanics,1993年,28卷,3期,313页
  • 3Chang Bilin,J Applied Mechanics,1990年,57卷,3期,707页
  • 4沈世钊,武岳.大跨空间结构抗风研究新进展与展望[C]∥第十三届全国结构风工程学术会议.大连,2007.
  • 5BIRMAN V. Dynamic stability of unsymmetrically lami- nated rectangular plates[ J ]. Mechanics Research Com- munications, 1985, 12(2) :81 -86.
  • 6LEE H P, NG T Y. Dynamic stability of a moving rectan- gular plate subject to in-plane acceleration and force per- turbations[J]. Applied Acoustics, 1995, 45 (94) :47 - 59.
  • 7SINHA S K. Comments on Mynamic stability of a rectan- gular plate subjected to distributed in-plane dynamic force [J]. Journal of Sound & Vibration, 1989, 128(3) :505 - 507.
  • 8CHIA C Y. Large amplitude vibrations of laminated rec- tangular plates[J]. Fibre Science & Technology, 1982, 17(2) : 123 - 131.
  • 9RAO GV, RAJU I S, RAJU K K, et al. A finite ele- ment formulation for large amplitude flexural vibrations of thin rectangular plates [ J ]. Computers & Structures, 1976, 6(6) :163 - 167.
  • 10TAKAHASHI K, KONISHI Y. Dynamic stability of a rectangular plate subjected to distributed in-plane dynam- ic force[J]. Journal of Sound & Vibration, 1988, 123 (1) :115 -127.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部