摘要
本文讨论无约束最优化数值方法的二阶曲线方法。首先给出关于一般曲线法的全局收敛性定理及其证明。然后在欧几里得空间RN中引入力学,给出了RN中Lagrange运动学方程及其数学上的推导。利用力学概念,给出几个具体的二阶曲线法模型,并给出了它们的全局收敛性分析。
Abstract This paper discusses the second curvilinear methods for unconstrained optimization.We prove the global convergence of the general curvilinear methods. We introduce the mechanics into the Euclideon space RN , and give Lagrange equation of motion. Using the concept of mechanics, we give the models of the second curvilinear methods, and analyze the global convergence properties.
出处
《工程数学学报》
CSCD
1995年第2期1-9,共9页
Chinese Journal of Engineering Mathematics