摘要
我们讨论一般线性模型:Y=Xβ+e,E(e)=0,Cov(e)=σ~2V,V为非负定协方差矩阵。我们知道μ=Xβ的最小二乘估计和最佳线性无偏估计分别为μ~*=X(X′X)^-X′Y和■=X(X′T^-X)^-X′X^-Y,这里T=V+XUX′,U是一个对称阵使得R(T)=R(V■X)以及T≥0。本文讨论V≥0时,■与μ~*之差的范数界,把V>0时■和μ~*之差在Haberman条件下的范数界推广到V≥0,且在取常用的欧氏范数时,得到使Haberman条件成立的便于应用的充要条件。本文还证明了[2]界的推广形式,并把[3]界推广到V≥0的情况。
Consider the linear model: Y=Xβ+e, where E(e)=0, Cov=σ~2V, V is a nonnegative definite matrix. It is well known that μ~*=X(X′X)-X′Y and ■=X(X′T-X)-X′T-Y are respectively the least squares and the best linear unbiased estimators of μ=Xβ, where T=V+XUX′, U is a symmetric matrix satisfying rank(T)=rank(V:x) and T≥0. In this paper, a bound similar to Haberman's is obtained when a certain condition is satisfied. If the vector norm involved is taken as the Euclidean one, a set of necessary and suffciant conditions that is easily applicable for Haborman's condition to be true is obtained. We prove an extended form of a bound similar to that of [2], and also extend bound [3] to that V≥0.
出处
《应用概率统计》
CSCD
北大核心
1989年第3期218-225,共8页
Chinese Journal of Applied Probability and Statistics