期刊文献+

n维空间正交张量的典则表示和自由度公式 被引量:1

Canonical Representations and Degree of Freedom Formulae of Orthogonal Tensors in n-Dimensional Euclidean Space
下载PDF
导出
摘要 本文借助于正交张量特征值的特性,采用剖分的方法.利用二维正交张量典则表示,很快就构造出一般n维欧氏空间上的正交张量的典则表示.利用Cayley-Hamilton定理,求得了正交张量各主不变量之间的相关方程,从而使得正交张量特征根的求解只需要在一个阶数不大于空间维数n的一半的代数方程上进行.本文还给出了正交张量的独立参数个数——自由度的计算公式. In this paper, with the help of the eigenvalue properties of orthogonal tensors in n-dimensional Euclidean space and the representations of the orthogonal tensors in 2-dimensional space, the canonical representations of orthogonal tensors in n-dimensional Euclidean space are easily gotten. The paper also gives all the constraint relationships among the principal invariants of arbitrarily given orthogonal tensor by use of Cayley-Hamilton theorem; these results make it possible to solve all the eigenvalues of any orthogonal tensor based on a quite reduced equation of m-th order, where m is the integer part of n/2. Finally, the formulae of the degree of freedom of orthogonal tensors are given.
出处 《应用数学和力学》 EI CSCD 北大核心 1989年第1期85-93,共9页 Applied Mathematics and Mechanics
  • 相关文献

参考文献2

  • 1郭仲衡,张量理论和应用,1988年
  • 2郑泉水,江西工学院学报,1984年,4期,1页

同被引文献15

  • 1郭仲衡.连续介质的自旋和伸长率标架旋率[J]应用数学和力学,1988(12).
  • 2郑泉水,黄克智.Cauchy平均转动[J]科学通报,1988(22).
  • 3郑泉水,戴天民.Cayley-Hamilton定理的两种简单证法和两个表现定理[J]应用数学和力学,1984(01).
  • 4朱兆祥.论非线性应变[J]力学进展,1983(03).
  • 5[日]德冈辰雄 著,赵镇.理性连续介质力学入门[M]科学出版社,1982.
  • 6Prof. Dr. J. Stickforth,Dipl.-Ing. K. Wegener. A note on Dienes’ and Aifantis’ co-rotational derivatives[J] 1988,Acta Mechanica(1-4):227~234
  • 7Michael Hayes. On strain and straining[J] 1988,Archive for Rational Mechanics and Analysis(3):265~273
  • 8Xiong Zuhua,Zheng Quanshui. General algorithms for the polar decomposition and strains[J] 1988,Acta Mechanica Sinica(2):175~181
  • 9L. C. Martins,R. F. Oliveira,P. Podio-Guidugli. On the vanishing of the additive measures of strain and rotation for finite deformations[J] 1987,Journal of Elasticity(2):189~193
  • 10Dr. E. Chu. Aspects of strain measures and strain rates[J] 1986,Acta Mechanica(1-2):103~112

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部