摘要
设X是一凸度量空间,并且它的每一直径趋于零的非空闭子集的逆减序列具有非空交的性质.本文证明了,如果X的非空闭子集K的自映象T满足不等式:d(Tx,Ty)≤ad(x,y)+b{d(x,Tx)+d(y,Ty)}+c{d(x,Ty)+d(y,Tx)},(?)x,y∈K其中0≤a<1,b≥0,c≥0,使得a+c≠0且a+2b+3c≤1.则T在K中存在唯一不动点.
Let X be a convex metric space with the property that every decreasing sequence of nonempty closed subsets of X with diameters tending to zero has nonempty intersection. This paper proved that if T is' a mapping of a closed convex nonempty subset K of X into itself satisfying the inequality's
for all x, y in K, where unique fixed point in K
出处
《应用数学和力学》
CSCD
北大核心
1989年第2期193-198,共6页
Applied Mathematics and Mechanics