期刊文献+

共轭梯度反传算法及其在液体火箭发动机系统辨识中的应用

Conjugate Gradient Back-propagation Algorithm and Its Application on System Identification of Liquid Rocket Engine
下载PDF
导出
摘要 结合非线性优化理论和方法提出了易于实现、收敛速度比较快的多层神经网络共轭梯度反传算法。液体火箭发动机参数辨识技术已得到广泛的应用,由于传统的数学方法必须基于发动机已知模型,使得其参数辨识受到极大的限制。文中基于神经网络共轭梯度反传算法进行液体火箭发动机的系统辨识,结合变推力发动机热试车动态数据,得到了满意的仿真结果。 A conjugate gradient back-propagation (CGBP) algorithm of a multilayered neural network is presented with the theory and methods for nonlinear optimization. Since this learning algorithm needn't compute the second derivative,it is worked out easily. Furthermore, the CGBP belongs to the superlinear convergence algorithm so that the performance of the multilayered neural network is improved in comparison with the general back-propagation algorithm. The identification techniques have been widely applied to the field of the liquid rocket engine (LRE). Because the engine model must have been known before the system identified with traditional mathematical method ,the identification method of parameter is extremely restrained in the engine. Based on the neural network conjugate gradient algorithm ,the experimental data of a variable thrust rocket engine is presented to the neural network ,and a satisfied identification model is obtained in this paper.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 1995年第2期27-32,共6页 Journal of National University of Defense Technology
基金 国家自然科学基金
关键词 火箭 发动机 液体推进剂火箭 共轭梯度反传法 ss: liquid rocket engine neural network conjugate gradient back-propagation algorithm system identification
  • 相关文献

参考文献6

  • 1冯心,1994年
  • 2胡泽新,控制与决策,1992年,7卷,5期
  • 3方丁酉,推进技术,1992年,4期
  • 4王克昌,推进技术,1986年,1期
  • 5周锡文,宇航学报,1982年,1期
  • 6王德人,非线性方程组解法与最优化方法,1979年

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部