摘要
在文献[10]的基础上,考虑了定义在区间J上取值于Mikusinski算符域Q的子代数Q_0(Q_0可分离的Frechet空间)的算符函数,较系统和深入研究了它们的连续、圆变、可导、可积等概念和结果,从而利用严格归纳极限拓朴的性质,将其拓广到Q中去,使得算杆函数理论纳入到拓扑向量空间中讨论,为求解一般的算符(常或偏)微分方程奠定了基础。
On the basis of [10] , weconsier the Operator-valued functio ns bedefined on the interual J and the value in the silbalgebra Q_0 of Mikusinski operator field Q, Q_0 is the separated Frechet space,and discuss theirconcept and concl usion ofcontinuity,bounded ar1ati-von property differentiability integrability etc in rather svstemand deeping,this is a generalization and deepeen to the original concept and coclusion ofMikusinski for those thereby,they are extended to Q by the property of the strictinductive limit topolegy,such that this thcory of operator-valued functionsbe discussed in topologieal vector space, his will establish some basis for solving generaliz-ed operator(Ordinany or Partinl)differential equations.
基金
安徽省教委科学基金项目