摘要
讨论了一维双曲型方程系数的反演问题,采用的方法是对x进行离散得到相应的离散问题,利用特征线法把它化为第二类积分方程组,构造求解离散问题的迭代方法,证明这种迭代在局部范围内收敛,并且证明了离散问题存在唯一解。
Discussed the inverse problem of determination of coefficient for two-dimensional hyperbolic partial differential equation. The method of solving is to seatteren about x, and to get relevant problem. We turn the problem into intergral equations of second type with the method of characteristic lines.We then structure iteration method for solving relevant problem.The main results are that we prove the convergence of this method in part range and consequently the existence and uniqueness of the relevant problem.
出处
《哈尔滨师范大学自然科学学报》
1995年第2期27-32,共6页
Natural Science Journal of Harbin Normal University
关键词
偏微分方程
系数
反问题
双曲型方程
Partial differential equation, Coefficient
Inverse problem